Kaggle官网上数据可视化(sns)总结

2021/06/16 Python 共 1536 字,约 5 分钟

🔗:https://www.kaggle.com/alexisbcook/choosing-plot-types-and-custom-styles

Since it’s not always easy to decide how to best tell the story behind your data, we’ve broken the chart types into three broad categories to help with this.

  • Trends - A trend is defined as a pattern of change.
    • sns.lineplot - Line charts are best to show trends over a period of time, and multiple lines can be used to show trends in more than one group.
  • Relationship - There are many different chart types that you can use to understand relationships between variables in your data.
    • sns.barplot - Bar charts are useful for comparing quantities corresponding to different groups.
    • sns.heatmap - Heatmaps can be used to find color-coded patterns in tables of numbers.
    • sns.scatterplot - Scatter plots show the relationship between two continuous variables; if color-coded, we can also show the relationship with a third categorical variable.
    • sns.regplot - Including a regression line in the scatter plot makes it easier to see any linear relationship between two variables.
    • sns.lmplot - This command is useful for drawing multiple regression lines, if the scatter plot contains multiple, color-coded groups.
    • sns.swarmplot - Categorical scatter plots show the relationship between a continuous variable and a categorical variable.
  • Distribution - We visualize distributions to show the possible values that we can expect to see in a variable, along with how likely they are.
    • sns.distplot - Histograms show the distribution of a single numerical variable.
    • sns.kdeplot - KDE plots (or 2D KDE plots) show an estimated, smooth distribution of a single numerical variable (or two numerical variables).
    • sns.jointplot - This command is useful for simultaneously displaying a 2D KDE plot with the corresponding KDE plots for each individual variable.

文档信息

Search

    Table of Contents